
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, Nov. 2019 5512
Copyright ⓒ 2019 KSII

Generating a Ball Sport Scene in a Virtual
Environment

Jongin Choi1, Sookyun Kim2, Sunjeong Kim3 and Shinjin Kang4*

1 Department of Digital Media Design and Applications, Seoul Women's University
621 Hwarangro, Nowon-Gu, Seoul, Korea

[e-mail: funtech@swu.ac.kr]
2 Department of Game Engeenering, Paichai University

155-40 Baejae-ro, Seo-Gu, Daejeon, Korea
[e-mail: nicesk@gmail.com]

3 Department of Convergence Software, Hallym University
1 Hallymdaehak-gil, Chuncheon-si, Gangwon-do, Korea

[e-mail: sunkim@hallym.ac.kr]
4 School of Games, Hongik University

2639 Sejong-ro, Jochiwon, Sejong, Korea
[e-mail: directx@hongik.ac.kr]

*Corresponding author: Shinjin Kang

Received January 7, 2019; revised February 25, 2019; accepted April 27, 2019;
published November 30, 2019

Abstract

In sports video games, especially ball games, motion capture techniques are used to reproduce
the ball-driven performances. The amount of motion data needed to create different situations
in which athletes exchange balls is bound to increase exponentially with resolution. This paper
proposes how avatars in virtual worlds can not only imitate professional athletes in ball games,
but also create and edit their actions effectively. First, various ball-handling movements are
recorded using motion sensors. We do not really have to control an actual ball; imitating the
motions is enough. Next, motion is created by specifying what to pass the ball through, and
then making motion to handle the ball in front of the motion sensor. The ball's occupant then
passes the ball to the user-specified target through a motion that imitates the user’s, and the
process is repeated. The method proposed can be used as a convenient user interface for
motion based games for players who handle balls.

Keywords: Virtual character, Human computer interaction, Natural user interface, Physics –
based optimization, Motion synthesis

This work was supported by a research grant from Seoul Women's University(2019)

http://doi.org/10.3837/tiis.2019.11.013 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5513

1. Introduction

There is an increase in demand for hands-on user interactions through virtual reality
technology, especially in games like VR ping-pong, where the generation of realistic real-time
character animation in response to the fast movements of the ball is still an important issue.
The technique of character animations has been developed to utilize various motion control
techniques and create a more realistic and natural movement, which has traditionally relied on
a key frame technique. Particularly, the natural behavior of the characters appearing and
interacting with on-screen objects are critical factors that determine the quality of the media
contents. In the case of virtual reality contents, there has been an increased interest in the
necessity to generate adaptive motions for the interactions between characters and virtual
environments. Motion capture equipment is commonly used for character motion generation
in virtual reality. The motion capture device can analyze the user's motion in real time and
instantly reflect it in the virtual world. It is possible to reflect the movement of the user as an
action of the character in the virtual world as it is, or to recognize the hand motion of the user
and manipulate the virtual object. Therefore, the motion capture system provides an easy
solution for controlling the operation of the virtual character by allowing the user to instantly
generate a real-time animation. This technique involves converting the angle of the body joint
into the angle and position data on the time axis. This is very natural as it extracts data directly
from human motions; however, the execution of this technique still requires an expensive
system, especially to create motions of non-realistic objects. In other words, it has the
advantage of being able to apply the actual movement of a user to the animation as it is.
However, it is necessary to have a skilled actor to express a specific movement such as ball
kicking or a waltzing interaction with another character.

Fig. 1. System Overview.

In this paper, we propose a simple but interesting virtual avatar motion synthesis method

that considers physical interaction, so that users can handle the ball naturally, even in the
virtual world. In the real world, dealing with balls requires a high level of work objectives.
Therefore, it takes considerable time and effort to become a skilled player, especially while
manipulating a virtual ball using only a motion capture device; it would be more difficult than
manipulating one in the real world. Fig. 2 shows an overview of our system. Blue and red
boxes mean preprocessing and run-time processing. It involves four main steps. The first step
generates interaction information by analyzing the user’s motion. The second step searches
motion sequences from the first step. The motion of a user’s character is synthesized by
connecting motion sequences in the third step. At this time, the motion sequences that closely
resemble the user’s motion, as collected by the motion sensor, are selected in real-time. The

5514 Choi et al.: Generating a Ball Sport Scene in a Virtual Environment

final step generates (in real time) the movement paths for objects that are synchronized with
the synthesized motion of the user’s character while obeying the laws of physics. To confirm
the effect, we use our system to create a scene where the user can act as a well-trained football
player so they can exchange balls with other virtual characters.

Creating a sports scene (such as football) where athletes play together requires skilled actors
and expensive motion capture equipment. To shoot sports scenes according to the desired
scenarios, it is necessary to capture the motions of the actors for a relatively long period of
time through trial and error. In this study, it is possible to create such scenes by using one
user's motions, to generate a desired scene relatively quickly. In addition, one user can capture
the required motions in a small space, so cost and location problems are avoided as well. As
the method of this study can be used as a real time interface for controlling a character, it can
be utilized as a means for intuitively controlling a character's motion in a motion-based game.

Hyun et al. [1] created scenes in which a number of characters played a basketball game
using a sketch-based interface. It is possible to control at a high level, but fine control at a low
level is not easy and only plays according to a predefined scenario. In our study, the level of
character motion can be controlled by a user through the motion sensor, and it is possible to
instantly change the scenario of a game while watching the generated game scenes. Lee et al.
[2] created a data-based character that uses objects to play through the recurrent neural
network. However, they must manually specify the information about the dribble point of the
ball and the motion to be used by the character. Our method automatically detects the frame in
which the character and the ball interact, finds the motion most similar to the user's motion,
and automatically applies it to the character, so we can intuitively control the character's
motion. Liu et al. [3] created a physically based character dribbling a basketball using deep
reinforcement learning and object trajectory optimization. However, when the character
touches the ball, it appears somewhat awkward because the exact control of the ball is difficult.
Our method uses the interaction information between the pre-calculated ball and the character,
so it is possible to create a natural-looking animation. Furthermore, if the quality of motion
data is high enough, a realistic animation can be created.

2. Related Work
Designing the motions of virtual human character that actively responds to the physical

environment is an established challenge in computer animation. From a research point of view,
there are various examples of research areas on character motion generation. For instance, if
motion capture technology is operated at a low cost, things such as the creation of new motion
from acquired motion data, natural connection and synthesis between motion, physical
description, and simulation become increasingly difficult. Among these, it can be said that the
field that controls the character to physically describe and automatically generate a specific
action, or to keep the movement of the character from the external input. Recently, motion
synthesis studies are taking place considering the environment or an interaction between the
virtual characters and objects.

Our research involves bringing together example-based character animation and
physics-based rigid-body animation. We generate the movement path of an object from
motion capture data and synthesize the motion of an avatar to handle several objects. The
motion of the avatar is generated using the user's input motion from the motion sensor. Jain et al.
[4] proposed a method for the manual editing of the interaction between the movement of objects and
character motion. The movement path of the object and character poses can be edited. The movement
path can be modified by checking the collisions between the object and the character. As the user edits

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5515

the interaction manually, this method can offer detailed control, but it requires a lot of time and effort. In
our method, we do not correct the motion of the character at all. Instead, we generate movement paths
for the objects that are consistent with the motion of the character.

Choi et al. [5,6] generated various actions of a character controlling the movement of a ball, but
could not generate and control the motion of the character handling the ball in real time. In addition, the
motion of the juggling character was created in real time, but it was applied only to a single character
performing the said motion. In this study, we provide an intuitive method for a user to create and control
a scene in which a number of characters can simultaneously play a game in real time.

We extracted the information required to generate the movement path of an object by
analyzing motion data. Analyzing motion capture data has been used in research to help adapt
the motion of a character to the music composed. Kim et al. [7] extracted common patterns
from the motion of a person and generated a character to dance along to the rhythm of the
music. Shiratori et al. [8] categorized the motions of a person together with the strength of the
beat to synthesize a dancing motion that matched the input music. We analyze motion capture
data to generate the movement path of an object. Popovic’ et al. [9,10] proposed a method for
generating the movement path of a rigid body consistent with the laws of physics. They
generated natural moving objects by calculating the initial position and velocity of the rigid
body through optimizing the movement path under several constraints. We generate the
movement path of an object to be synchronized with the ball controlling motion both spatially
and temporally by using their method.

A variety of methods for controlling the motion of a character through a user's input has
been researched. Kovar et al. [11] and Lee et al. [12] generated a connected motion graph and
synthesized an animated character that moved in a direction and toward a goal position that
was specified by the user. Heck et al. [13] enabled a more detailed user control by the effective
mixing of similar motions. For example, the character can arrive at or punch a goal position
accurately. Gleicher [14] edited the movement path of a character and had the character move
along it. Gleicher et al. [15] enabled the character to be controlled easily by generating the
connection information for common poses. For example, their method could be used for the
motion of returning to an idle state after executing the kicking and punching commands in a
fighting game. Thorne et al. [16] and Martin et al. [17] had the movement of a character
controlled in detail via sketch-based user input. The user could draw various movements and
moving paths, such as normal walking, sneaking, marching, and jumping, with an electronic
pen. In [18,19], a character was created that interacted with the user input more rapidly and
effectively by using reinforcement learning. Levine et al. [20] made a character move and
reach a goal effectively in a user-specified dynamic environment. We specified the character's
motion by the user's motion via a motion sensor.

In the game industry, we can see the fact that started to pay attention not only to rendering
quality but also to character animation quality. It is a typical example of the movements
utilized in the Uncharted and Assassin’s Creed series created by Naughty Dog and Ubisoft
respectively. These companies have moved away from the simple interpolation used for
motion connection and created more realistic motion of the character using procedural or
parametric techniques for motion generation. The Hitman series, created by IO Interactive,
introduced the latest techniques in character animation in an attempt [21] to implement
realistic crowd simulations. Although it was not applied to the main character because of the
relatively slow reaction times, it produced very satisfactory results. Recently, Ubisoft used the
concept of [11] and [22] for making motion matching [23], which creates continuous
connection of characters smoothly and continuously. In this paper, we have also created a
virtual player animation using the method of Simon Clavet [23].

5516 Choi et al.: Generating a Ball Sport Scene in a Virtual Environment

Recently, many researches have been made to generate a character movement using
artificial intelligence. Holden et al. [24] created a data-based character that can be controlled in
real time using phase-functioned neural networks. Peng et al. [25] used the deep reinforcement
learning to create a bipedal physics-based character that naturally follows on the terrain. Peng
et al. [26] used deep reinforcement learning to create physics-based characters that follow
human skills. Yu et al. [27] created a physics-based character that learns how to move by itself
through reinforcement learning and energy optimization. Zhang et al. [28] used the
Mode-Adaptive Neural Networks to generate natural locomotion motions of quadrupedal
animals. There have also been researches that use artificial intelligence to generate animations
of interaction between characters and objects. Liu et al. [29] used Deep Q-Learning to climb
on an object and create a physics-based character that balances and moves on the object.
Chemin et al. [30] generated physically based characters that juggle using Reinforcement
Learning.

3. Sports Scene Generation
We use motion capture data to create a motion where the character controls the ball. To

enable one to easily create a character’s motion, we use a motion that mimics the motion of the
video without actually controlling the ball. We capture the motion generated by three
movements for foot volleyball: toss the ball to the nearest opponent, pass the ball to an
opponent far away in a medium-distance passing motion, and strike the ball with an attacking
motion to make it difficult for the opponent to obtain the ball. Three right-foot and three
left-foot motions are generated. To cover all the directions, we rotate the motion at intervals of
45° to create a motion that hits the ball. In other words, the player can hit at −135°, −90°, −45°,
0°, 45°, 90°, 135°, and 180° with respect to the forward direction so that the character can
receive and pass the ball in any direction.

In this study, as the motion of a character is determined using the user’s motion, we analyze
the captured motion and search for the section (SB) in which a player can hit the virtual ball.
Fig. 2 shows how to find SB. First, we determine the maximum height frame (FH), which is the
frame where the hit bone is higher than in the neighboring frames. To determine FH, we check
the height of the hit bone in every frame of motion. The user specifies the threshold height, and
we search for all the frames in which the hit bone is higher than this threshold. Fig. 2(a) shows
all the FH values found in the location graph of the hit bone. The red vertical line denotes FH.
Next, we determine all the maximum speed frames (FS) that are faster than the neighboring
frames. To determine FS, we check the speed of the hit bone in every frame of the motion data.
Note that FS may appear to be very close to one another, particularly when the hit bone returns
to its original position after hitting the ball. To effectively prevent this issue, only one frame
with the faster speed is selected from the two neighboring FS.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5517

(a) Maximum height frames in height graph of a hit bone

(b) Maximum speed frames in speed graph of a hit bone

(c) Hit sections which are searched from (a) and (b)

Fig. 2. Motion analysis with graphs. 1:FH. 2: FS. 3: SB. 4: Height graph of a hit bone. 5: Speed graph of
a hit bone. 6: Threshold height.

5518 Choi et al.: Generating a Ball Sport Scene in a Virtual Environment

Fig. 2(b) shows all the FS found from the velocity graph of the hit bone. The magenta
vertical line indicates FS. The section from the neighboring FS to the FH is the SB in which a
player can hit the ball. Fig. 2(c) shows all the SB determined using the position and velocity
graph of the hit bone. At the bottom of the graph, the thick red horizontal line represents SB.

Fig. 3. Character poses in the hit motion sequence.

We classify the motion of a character into two broad categories. One is the motion of hitting

the ball, and the other is the idle motion. We use the position graph of the hit bone to determine
the hit motion section (SH), which is the section of motion in which a player hits the ball. Fig.
3 shows how to determine SH. Top figure shows the result of extracting the section of the hit
motion from the height graph of the hit bone. Bottom figure shows five representative poses
that constitute the hit motion. Yellow arrow lines denote the movement vectors of the hit bone.
The top graph is the position graph of the hit bone, and the thick blue line indicates SH. In the
graph above, the red box indicates one SH, and the bottom figure shows its enlarged version. In
the position graph of the hit bone, if we find the frame with the lowest position of the hit bone
backward and forward with respect to the maximum height frame (FH), it becomes SH. The

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5519

figure at the bottom shows the main poses of the character appearing in the SH. The first and
the last poses show the character standing before and after hitting the ball. The second and the
fourth are the poses of the character in the maximum speed frame (FS). The third is the pose of
the character in the maximum height frame (FH). The dotted yellow line on the character’s foot
indicates the movement vector of the hit bone. This is used to determine the motion that will be
the most similar to the user’s motion input from a motion sensor in the future. All the sections
except the hit motion section (SH) are used as the link motion sections (SL) for motion
connection. That is, SL is a section between two neighboring SH. We determine the optimal
match frames where the pose of the character is the most similar in two different SH and
connect the motion.

4. Interactive Motion Synthesis
In this study, we use the user’s motion to create animations that deal with the balls between

different characters in real time. We use the link motion section (SL) to create the seamless
motion of a character. In other words, the motion of the character jumps from one SL to another
SL to constantly connect the motion sequence. To achieve this, we determine the most natural
transition section (ST) that connects two different SL (SLi, SLj). We then determine an optimal
ST by using a method similar to motion matching [23]. If the user specifies the length of ST, the
ST is automatically determined by comparing the poses between SLi and SLj. In other words, ST
is the interval in which the pose of the character is the most similar between SLi and SLj. Fig. 3
shows the poses of the characters aligned in the X-axis direction for the pose comparison and
the position and speed of the main bones. Fast calculation is possible because the position and
the velocity of all the bones are calculated in advance. Equation 1 is used for the comparison
between the two poses. We pre-compute the ST for all the (SLi, SLj) pairs and link the motion
sequences in real time. Here, Dp represents a difference value between the character pauses in
each frame. pi and vi denote the position and the velocity of the i-th bone, respectively. 𝜔𝜔𝑖𝑖

𝑝𝑝 and
𝜔𝜔𝑖𝑖
𝑣𝑣 are the weights for the position and the velocity of the i-th bone, respectively.

𝐷𝐷𝑝𝑝 = ∑ 𝜔𝜔𝑖𝑖

𝑝𝑝‖𝑝𝑝𝑖𝑖 − 𝑝𝑝′𝑖𝑖‖𝑛𝑛
𝑖𝑖=0 +∑ 𝜔𝜔𝑖𝑖

𝑣𝑣‖𝑣𝑣𝑖𝑖 − 𝑣𝑣′𝑖𝑖‖𝑛𝑛
𝑖𝑖=0 (1)

(a) Aligned character poses. (b) Positions and velocities of main bones.

Fig. 4. Aligned pose match information

5520 Choi et al.: Generating a Ball Sport Scene in a Virtual Environment

Fig. 4 shows how to connect the motion sequences continuously in ST. Black lines denote
the character poses in (a). Red and magenta represent the foot bones, violet and blue indicate
the hand bones, and black denotes a root bone in (b). All the link motion sections (SL) can be
connected to each other. To determine which SL to jump to, we use the hit motion section (SH).
When the user carries out a motion that deals with the ball in front of the motion sensor, it
determines the SH having the motion that is the most similar to the motion of the user. To do
this, SH is extracted from the user’s motion in real time, and the SH that is the most similar to
the user’s motion is selected. To find the SH that is the most similar to the user’s motion, we
use the motion vector, which denotes the movement of the hit bone in the SH. The motion
vector is the arrow marked with a yellow dotted line at the bottom of Fig. 3. For a fast
comparison, we pre-computed the motion vector in all SH. The SH having the motion vector
that is the most similar to the motion vector extracted from the user’s motion is searched in real
time. Then, we connect the motion to SL that is connected to the corresponding SH for the
motion connection. Thus, the motion of the character similar to the user motion is generated.
We use Equation 2 to calculate the difference between the two motion vectors. Here, Dm
denotes the difference between the user’s motion vector and the motion vector stored in the
motion database. 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 represents the maximum velocity of the hit bone in the interval of the
motion clip. Further, mi and ti denote the motion vectors of the i-th motion vector of the hit
bone and the motion vector, respectively. 𝜔𝜔𝑣𝑣 , 𝜔𝜔𝑚𝑚 , and 𝜔𝜔𝑡𝑡 represent the weights for the
maximum velocity, motion vector, and travel time of the hit bone, respectively.

𝐷𝐷𝑚𝑚 = 𝜔𝜔𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜔𝜔𝑚𝑚 ∑ ‖𝑚𝑚𝑖𝑖 − 𝑚𝑚′𝑖𝑖‖𝑛𝑛
𝑖𝑖=0 + 𝜔𝜔𝑡𝑡 ∑ |𝑡𝑡𝑖𝑖 − 𝑡𝑡′𝑖𝑖|𝑛𝑛

𝑖𝑖=0 (2)

Fig. 5. Connecting motion sequences. The dotted box denotes ST. TB represents the ball travel time.

To create a ball trajectory that matches the character’s motion, the starting position and the
arrival position of the ball are required. Table 1 shows the algorithm for accomplishing this.

Table 1. Algorithm for Generating Ball Trajectory
1. Select three characters (C1, C2, and C3) to pass the ball in a sequential order.
2. Calculate the movement path of all the balls in the hit ball section (SB1) of the first
character (C1).
3. Select the movement path (T1) of the ball closest to the position of the second character
(C2).
4. Find the hit position and frame (PH1, FH1) of the first character (C1) from T1.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5521

5. Calculate the movement path of all the balls in the hit ball section (SB2) of the second
character (C2).
6. Select the movement path (T2) of the ball closest to the position of the third character
(C3).
7. Find the hit position and frame (PH2, FH2) of the first character (C2) from T2.
8. Calculate the trajectory and the movement time of the ball from (PH1, FH1) and (PH2, FH2).

Once the start position and the arrival position of the ball are determined, the movement
trajectory and the movement time of the ball are generated in real time by using the method
described in [9]. We can create a moving trajectory of the ball by specifying the physical
parameters such as elastic modulus, air resistance, and number of bounces. Once the
movement time of the ball is determined, the motion sequence is connected on the basis of the
movement time (TB) of the ball, as shown in Fig. 5.

We define the state of the object as 𝑞𝑞 ≡ (𝑥𝑥, 𝑣𝑣)𝑇𝑇, where x and v are the position and velocity
of the object. In free flight, the state of the object as a function of time can be presented by an
ordinary differential equation:

𝑑𝑑
𝑑𝑑𝑡𝑡
𝑞𝑞(𝑡𝑡) = 𝐹𝐹(𝑡𝑡, 𝑞𝑞(𝑡𝑡),𝑢𝑢) (3)

F is derived from Newton's laws and the control vector u contains the parameters for the

simulation such as the initial position and velocity. If we integrate this equation, we obtain:

𝑞𝑞(𝑡𝑡) = 𝑞𝑞0 + ∫ 𝐹𝐹(𝑡𝑡, 𝑞𝑞(𝑡𝑡),𝑢𝑢)𝑑𝑑𝑡𝑡𝑡𝑡
𝑡𝑡0

 (4)

Because this equation is only for free flight, we process the collision of the object as
follows:

𝑞𝑞+ = 𝑞𝑞− + 𝐼𝐼(𝑞𝑞−,𝑢𝑢) (5)

Here, q- and q+ denote the states before and after the collision, respectively. I denotes the
collision impulse. We can abstract the function for the object to include the collision as
follows:

𝑞𝑞(𝑡𝑡) = 𝑆𝑆(𝑡𝑡,𝑢𝑢) (6)

To calculate the control vector u, we linearize this equation partially, by adopting a
differential approach:

𝛿𝛿𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝜕𝜕𝜕𝜕(𝑡𝑡𝑖𝑖,𝑢𝑢)
𝜕𝜕𝑢𝑢

𝛿𝛿𝑢𝑢 (7)

We solve the equation for δu using a conjugate-gradient technique. The differential
update is only a small step in the computed direction:

𝑢𝑢′ = 𝑢𝑢 + 𝜖𝜖𝛿𝛿𝑢𝑢 (8)

When the control vector u' is updated, the rigid-body simulator calculates the new
movement path for the object. This process is repeated until the movement path converges. Fig.
6 shows the result of generated ball trajectory. The black curves show the trajectory of all

5522 Choi et al.: Generating a Ball Sport Scene in a Virtual Environment

movements of the ball that can be generated in the hit section. The cyan lines show the speeds
of the hit bone in all frames in the hit section. The cyan dots are the hit positions. The white
curve shows a selected ball trajectory among them. The red curve is the movement trajectory
of the ball, which is exactly adjusted to the hit position of the next character.

Fig. 6. Ball trajectory generation.

5. Experimental Results
Using our method, it is possible to easily generate collaborative animation of athletes

handling a ball. When a user's motion is inputted through the motion sensor such as Kinect, the
character motion most similar to the input motion is searched and applied in real time; we can
input the motion of the desired character in real time without any additional manual work and
create a desired game scene. That way, we were able to quickly and easily create scenes with
several characters playing together.

Using the method proposed, we have created virtual players that control virtual balls. We
used a computer with a Kinect motion sensor, an Intel Core i7-7700k CPU, 64GB of RAM,
and an Nvidia GeForce GTX 1080 Ti GPU to create motions that involve ball-handling with
multiple characters effectively. Fig. 7 shows the result animations generated, and we captured
both the left and right motions by subtracting the ball from 0 to 180 degree by 45 degree from
the front. We captured the motion in three types of motion: toss the ball for a close distance,
pass for a medium distance, and attack the opponent with a strong ball. To generate the result
animation, after designating the path sequence of the ball, the number of times of the bounce,
the user's motion is input through the motion sensor, and the motion of the character is
specified by the user’s motion. The air resistance was 0.2, the coefficient of elasticity was 0.7,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5523

the gravity was 9.8 m/s, and the number of bounces per pass was one. Fig. 8 is an animation
where six characters are places instead of a team of three.

Fig. 7. User’s input motion and virtual player’s motion

Fig. 8. Ball-controlling animation.

5. Discussion
The method of this paper does not actually control the ball. Instead, it only uses the imitation
motion, so the reality may be somewhat reduced. However, with low-cost motion sensors, you
can quickly and easily create animations for players who are skilled in the virtual world. Our
method assumes that fictitious players make and receive balls without a mistake. Therefore, it
is difficult for the player to control the sudden action of losing the ball by striking the opponent.
The model does not consider how far one can actually hit the ball. If the distance among the
characters is too far or narrow, the motion of the character will appear unnatural. If the
character looks at the ball in the idle state or turns toward the side with the ball, the drawing is
more realistic. In the motion that we use, the toss and pass have similar motions, which
sometimes makes it difficult to distinguish. Thus, we can more precisely distinguish using the
maximum speed of the hit bone. We described our method with foot volleyball as an example,

5524 Choi et al.: Generating a Ball Sport Scene in a Virtual Environment

but we can apply our method to various ball games that control balls such as squash, tennis,
volleyball, and separktakraw. However, the quality of the motion may deteriorate because it is
not the motion of the actual player. In fact, if one uses the motion of the real player to control a
ball, one can create a higher-quality animation.

6. Conclusion and Future Work
We introduced a method to generate scenes in which several characters play together using a
low-cost motion sensor such as Kinect. The method of this study allows users to easily create
scenes where various characters play through motion analysis although the quality of the
motion may be somewhat deteriorated. In the future, we will add a system that creates a more
natural match scene considering the actual travel time of the ball. It will also be interesting to
use virtual reality and motion capture equipment to play with tools such as tennis racquets, or
to create scenes where multiple users play together over a network. Now, we are using the
motion data to create a virtual player's motion, but in time, we will train the character using
deep learning, and then let them play with each other. It will be a difficult but a very
meaningful attempt.

References
[1] K. Hyun, K. Lee and J. Lee, "Motion Grammars for Character Animation," Computer Graphics

Forum, Vol. 35, Issue 2, pp. 103-113, May 2016. Article (CrossRef Link)
[2] K. Lee, S. Lee and J. Lee, "Interactive Character Animation by Learning Multi-Objective

Control," ACM Transactions on Graphics (SIGGRAPH Asia 2018), Vol. 37, Issue 6, Dec 2018.
Article (CrossRef Link)

[3] L. Liu and J. Hodgins, "Learning basketball dribbling skills using trajectory optimization and deep
reinforcement learning," ACM Trans. Graph., vol. 37, Issue 4, Article No. 142, July 2018.
Article (CrossRef Link)

[4] S. Jain and C.K. Liu, "Interactive synthesis of human-object interaction," in Proc. of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '09, pp.47-53, 2009.
Article (CrossRef Link)

[5] J.I. Choi, S.J. Kang, C.H. Kim and J. Lee," Virtual ball player," Visual Computer, Vol. 31, No. 6-8,
pp. 905-914, June 2015. Article (CrossRef Link)

[6] J.I. Choi, S.J. Kim, C.H. Kim and J. Lee, "Let's be a virtual juggler," Computer Animation and
Virtual Worlds, Vol. 27, No. 3-4, pp. 443-450, May 2016. Article (CrossRef Link)

[7] T.H. Kim, S.I. Park and S.Y. Shin, "Rhythmic-motion synthesis based on motion-beat analysis," in
Proc. of ACM SIGGRAPH 2003 Papers, SIGGRAPH '03, pp.392-401, 2003.
Article (CrossRef Link)

[8] T. Shiratori, A. Nakazawa and K. Ikeuchi, "Dancing-to-music character animation," Computer
Graphics Forum, vol. 25, no. 3, pp. 449-458, 2006. Article (CrossRef Link)

[9] J. Popović, S.M. Seitz, M. Erdmann, Z. Popović and A. Witkin, "Interactive manipulation of rigid
body simulations," in Proc. of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH '00, pp.209-217, ACM Press/Addison-Wesley Publishing Co., pp.
209-217, 2000. Article (CrossRef Link)

[10] J. Popović, S.M. Seitz and M. Erdmann, "Motion sketching for control of rigid-body simulations,"
ACM Trans. Graph., vol.22, no.4, pp.1034-1054, Oct. 2003. Article (CrossRef Link)

[11] L. Kovar, M. Gleicher and F. Pighin, "Motion graphs," in Proc. of the 29th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH '02, New York, NY, USA, ACM,
pp.473-482, 2002. Article (CrossRef Link)

https://doi.org/10.1111/cgf.12815
https://doi.org/10.1145/3272127.3275071
https://doi.org/10.1145/3197517.3201315
https://doi.org/10.1145/1599470.1599476
https://doi.org/10.1007/s00371-015-1116-9
https://doi.org/10.1002/cav.1701
https://doi.org/10.1145/1201775.882283
https://doi.org/10.1111/j.1467-8659.2006.00964.x
https://doi.org/10.1145/344779.344880
https://doi.org/10.1145/944020.944025
https://doi.org/10.1145/566570.566605

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5525

[12] J. Lee, J. Chai, P.S.A. Reitsma, J.K. Hodgins and N.S. Pollard, "Interactive control of avatars
animated with human motion data," in Proc. of the 29th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH '02, New York, NY, USA, pp.491-500, 2002.
Article (CrossRef Link)

[13] R. Heck and M. Gleicher, "Parametric motion graphs," in Proc. of the 2007 Symposium on
Interactive 3D Graphics and Games, I3D'07, New York, NY, USA, pp.129-136, 2007.
Article (CrossRef Link)

[14] M. Gleicher, "Motion path editing," in Proc. of the 2001 Symposium on Interactive 3D Graphics,
I3D '01, New York, NY, USA, pp.195-202, 2001. Article (CrossRef Link)

[15] M. Gleicher, H.J. Shin, L. Kovar and A. Jepsen, "Snap-together motion: Assembling run-time
animations," in Proc. of ACM SIGGRAPH 2008 Classes, SIGGRAPH '08, New York, NY, USA,
pp.52:1-52:9, 2008. Article (CrossRef Link)

[16] M. Thorne, D. Burke and M. van de Panne, "Motion doodles: An interface for sketching character
motion," in Proc. of ACM SIGGRAPH 2006 Courses, SIGGRAPH '06, New York, NY, USA, ACM,
2006. Article (CrossRef Link)

[17] M. Guay, R. Ronfard, M. Gleicher and M.P. Cani, "Space-time sketching of character animation,"
ACM Transactions on Graphics, vol.34, no. 4, Article No. 118, Aug. 2015.
Article (CrossRef Link)

[18] J. Lee and K.H. Lee, "Precomputing avatar behavior from human motion data," in Proc. of the
2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '04, Aire-la-Ville,
Switzerland, Eurographics Association, pp.79-87, 2004. Article (CrossRef Link)

[19] S. Levine, J.M. Wang, A. Haraux, Z. Popović and V. Koltun, "Continuous character control with
low-dimensional embeddings," ACM Transactions on Graphics, vol.31, no.4, pp.28:1-28:10, July
2012. Article (CrossRef Link)

[20] S. Levine, Y. Lee, V. Koltun and Z. Popović, "Space-time planning with parameterized
locomotion controllers," ACM Trans. Graph., vol. 30, no.3, pp. 23:1-23:11, May. 2011.
Article (CrossRef Link)

[21] A. Treuille, Y. Lee and Z. Popović, "Near-optimal character animation with continuous control,"
in Proc. of ACM SIGGRAPH 2007 Papers, SIGGRAPH '07, New York, NY, USA, ACM, 2007.
Article (CrossRef Link)

[22] Y. Lee, K. Wampler, G. Bernstein, J. Popović and Z. Popović, "Motion fields for interactive
character locomotion," ACM Transactions of Graphics, vol.29, no.6, pp.138:1-138:8, Dec. 2010.
Article (CrossRef Link)

[23] S. Clavet, "Motion matching," in Proc. of Game Developer Conference 2016, 2016.
Article (CrossRef Link)

[24] D. Holden, T. Komura and J. Saito, "Phase-functioned neural networks for character control,"
ACM Trans. Graph, Vol. 36, Issue 4, Article No. 42, July 2017. Article (CrossRef Link)

[25] X.B. Peng, G. Berseth, K. Yin and M. Van De Panne, "DeepLoco: dynamic locomotion skills
using hierarchical deep reinforcement learning," ACM Trans. Graph, Vol. 36, Issue 4, Article 41,
July 2017. Article (CrossRef Link)

[26] X.B. Peng, P. Abbeel, S. Levine and M. van de Panne, "DeepMimic: example-guided deep
reinforcement learning of physics-based character skills," ACM Trans. Graph., Vol. 37, Issue 4,
Article 143, July 2018. Article (CrossRef Link)

[27] W. Yu, G. Turk and C.K. Liu, "Learning symmetric and low-energy locomotion," ACM Trans.
Graph, Vol. 37, Issue 4, Article 144, July 2018. Article (CrossRef Link)

[28] H. Zhang, S. Starke, T. Komura and J. Saito, "Mode-adaptive neural networks for quadruped
motion control," ACM Trans. Graph, Vol. 37, Issue 4, Article No. 145, July 2018.
Article (CrossRef Link)

[29] L. Liu and J. Hodgins. "Learning to Schedule Control Fragments for Physics-Based Characters
Using Deep Q-Learning," ACM Trans. Graph., Vol. 36, Issue 3, Article No. 29, June 2017.
Article (CrossRef Link)

https://doi.org/10.1145/566570.566607
https://doi.org/10.1145/1230100.1230123
https://doi.org/10.1145/364338.364400
https://doi.org/10.1145/1401132.1401203
https://doi.org/10.1145/1185657.1185777
https://doi.org/10.1145/2766893
https://doi.org/10.1145/1028523.1028535
https://doi.org/10.1145/2185520.2335379
https://doi.org/10.1145/1966394.1966402
https://doi.org/10.1145/1275808.1276386
https://doi.org/10.1145/1882261.1866160
https://www.gdcvault.com/play/1023280/Motion-Matching-and-The-Road
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1145/3072959.3073602
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3197517.3201397
https://doi.org/10.1145/3197517.3201366
https://doi.org/10.1145/3083723

5526 Choi et al.: Generating a Ball Sport Scene in a Virtual Environment

[30] J. Chemin and J. Lee, "A physics-based Juggling Simulation using Reinforcement Learning," in
Proc. of ACM Siggraph Conference on Motion, Interaction and Games, 2018.
Article (CrossRef Link)

Jongin Choi, He received PhD at Korea University in 2016 from the Department of
Computer Science from Korea University. After completion, he joined Nexon Korea as a lead
client programmer. He has worked at NCSoft Korea as a lead animation programmer in a new
AAA online game. Now he is a professor in the major of game contents in Youngsan
University.

Sookyun Kim, He received PhD. in Computer Science & Engineering Department from
Korea University, Seoul, Korea, in 2006. He joined Telecommunication R&D center at
Samsung Electronics Co., Ltd., from 2006 and 2008. He is now a professor at Department of
Game Engineering at Paichai University, Korea. He has published many research papers in
international journals and conferences. His research interests include multimedia, pattern
recognition, image processing, mobile graphics, geometric modeling, interactive computer
graphics, and virtual reality..

Sunjeong Kim, She is a professor in the department of convergence software in Hallym
University. Her research interests include Geometric Modeling, Scientific Visualization,
Virtual Reality and Augmented Reality, GP-GPU Programming.

Shinjin Kang, He received an MS degree at Korea University in 2003. After graduation, he
joined Sony Computer Entertainment Korea (SCEK) as a video game programmer. From
2006, he has worked at NCsoft Korea as a lead game designer from 2009. He received a PhD
degree in Computer Science and Engineering at Korea University in 2011. And he is now a
professor at the school of games in Hongik University.

https://doi.org/10.1145/3274247.3274516

